热力学相平衡是定量化研究深部地质过程的关键手段。可以对变质和岩浆作用进行定量正演模拟计算,预测不同条件下的稳定矿物组合、成分以及元素分配行为以及各种物理化学性质,是确定变质P-T条件及演化轨迹的主要方法。
GeoPS是一款免费的可视化相平衡模拟软件。基于Gibbs自由能最小法,视窗操作程序,界面友好,无需学习就可计算相图。具有:
不断丰富和完善的功能。实现计算各种复杂体系下岩石的P-T、P-X、T-X和X-X视剖面图,以及矿物含量或成分等值线等图件。更多新功能正在开发中。
所见即所得的可视化计算。友好的图形界面、极低的学习和使用成本,使任何有需求的地学研究人员都可以轻松实现以前只有少数人掌握的岩石相平衡模拟计算。计算过程全自动化,只需输入全岩成分,一键完成。对于高级用户,也可以对各种参数自定义设置,实现个性化计算。
无与伦比的计算效率,即使是复杂体系下的平衡相图计算结果也是立等可取。
为了使GeoPS更好地发展,给大家提供更加丰富而强大的功能,更优的使用体验,为攀登科学高峰阻力,欢迎贡献您的力量,提供建议、报告bug,修复Bug,功能开发等待。招募自愿者,包括但不限于核心开发组、应用拓展组、文档编辑组、网络维护组。
精心设计的架构和数据结构+高效的算法+并行计算,造就非凡的计算效率。在数分钟内就可以完成复杂体系下的岩石相图计算,计算速度比同类软件快1~2个数量级。
测试设备:
A: Dell XPS-15 笔记本电脑,CPU i7-6700HQ 2.6GHz, 16G内存, Windows10 ×64 家庭版
B: Lenovo ThinkCentre M8300 台式电脑,CPU i7-2600 @3,4Hz, 16G内存, Windows10 pro ×64
图 |
GeoPS 1 thread a |
GeoPS 1 threadb |
GeoPS 4 threadsb |
Perple_X v6.8.6 |
Domino | 备注 |
---|---|---|---|---|---|---|
BL487 Green 2016 Fig.4a |
8m30s; Pre:<1m |
6m29s; Pre:<1m |
3m25s Pre:<30s |
11h31m29se | 2h00m25ss | Perple_X 中initial_resolution设为 1/6 1/12,其余为默认设置。 查看计算结果 |
White 2014 Fig.9a | 17m25s; Pre:<1m |
13m16s; Pre:~40s |
4m8s Pre:<30s |
1h23m | 1h31m22.34s | Perple_X 中initial_resolution设为 1/10 1/20,其余为默认设置。 查看计算结果 |
KLB-1 J&H 2015 Fig.1 |
8m01s; Pre:<1m |
5m30s; Pre:~30s |
1m51s Pre:<20s |
|||
BL487 Without solutions |
22s; Pre:3s |
21s; Pre:2s |
20s Pre:<3s |
2s | Perple_X 默认设置。 查看计算结果 |
|
White 2014b Fig.9 | 12m12s; Pre:<1m 12676 P |
9m08s; Pre:~50s 11571 P |
3m22s Pre:<23s 12380 P |
45m | 1h31m22.34s | Perple_X 中initial_resolution设为 1/8 1/16,其余为默认设置。 查看计算结果 |
a: Computer A;
b: Computer B;
Pre: 初步结果;
Perple_X和Theriak-Domino的时间仅包含计算时间,不包括作图时间;GeoPS的时间包括计算和绘图。
Theriak-Domino 采用的是D.K. Tinkham版本,来自: http://dtinkham.net/peq.html
Perple_X 版本6.9.0, 来自其官网:http://www.perplex.ethz.ch/。更新版的Perple_X的计算速度似乎更慢,所以继续使用了该版本。
Perple_X使用默认设置时,提示 “**error ver041** too many pseudocompounds, routine: SUBDIV”。
因此将perplex_option.dat 中的initial_resolution尝试改为小,以解决此错误。
为了验证GeoPS计算结果的可靠性,对已发表文献中利用THERMOCLAC计算的相图进行对比。结果显示,在使用相同的数据库和活度模型的情况下,GeoPS计算结果与THERMOCALC的结果一致。
MnNCKFMASHTO体系下,GeoPS计算结果与THERMOCALC比较采用Green et al., 2014中的Fig. 4a。GeoPS计算结果几乎一致地再现了Green et al., 2014中的Fig. 4a原图中的相边界。也与Domino计算结果一致。
两者计算结果在绝大部分区域完全一致,只是在左下角相边界不够规则和平滑。
MnNCKFMASHTO体系下,GeoPS计算结果与THERMOCALC比较采用White et al., 2014中的Fig. 9。左图为White 2014中的Fig. 9,右图为GeoPS计算结果。 两者计算结果几乎完全一致。
左图为Jennings and Holland 2015中的Fig.1 ,右图为GeoPS计算结果,两者基本一致。GeoPS计算中采用了与原文中相同的全岩成分和活度模型。
即使没有相平衡模拟的基础,用户也可以在数分钟内完成相平衡模拟计算。
软件的获取、安装简便,直接重网站就可以打开运行,输入全岩成分后,一键完成相图计算,且随时能看到各阶段的计算结果。
Xiang, H., & Connolly,J. A. D. (2021). GeoPS: An interactive visualcomputing tool for thermodynamic modelling ofphase equilibria. Journal of Metamorphic Geology, 40(2), 243– 255. https://doi.org/10.1111/jmg.12626 PDF下载
Connolly, J.A.D., 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters 236, 524-541.
de Capitani, C., Petrakakis, K., 2010. The computation of equilibrium assemblage diagrams with Theriak/Domino software. American Mineralogist 95, 1006-1016.
Green, E., White, R., Diener, J., Powell, R., Holland, T., Palin, R., 2016. Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology 34, 845–869.
Holland, T., Powell, R., 1991. A compensated-Redlich-Kwong (CORK) equation for volumes and fugacities of CO 2 and H 2 O in the range 1 bar to 50 kbar and 100–1600 C. Contributions to Mineralogy and Petrology 109, 265-273.
Holland, T., Powell, R., 2003. Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology 145, 492-501.
Holland, T., Powell, R., 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology.
Holland, T.J.B., Green, E.C.R., Powell, R., 2018. Melting of Peridotites through to Granites: A Simple Thermodynamic Model in the System KNCFMASHTOCr. Journal of Petrology 59, 881-900.
Holland, T.J.B., Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16, 309-343.
Jennings, E.S., Holland, T.J., 2015. A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. Journal of Petrology, egv020.
Lanari, P., Duesterhoeft, E., 2018. Modeling Metamorphic Rocks Using Equilibrium Thermodynamics and Internally Consistent Databases: Past Achievements, Problems and Perspectives. Journal of Petrology 60, 19-56.
Pitzer, K.S., Sterner, S.M., 1994. Equations of state valid continuously from zero to extreme pressures for H2O and CO2. The Journal of chemical physics 101, 3111-3116.
White, R., Powell, R., Holland, T., Johnson, T., Green, E., 2014a. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology 32, 261-286.
White, R., Powell, R., Johnson, T., 2014b. The effect of Mn on mineral stability in metapelites revisited: New a–x relations for manganese‐bearing minerals. Journal of Metamorphic Geology 32, 809-828.
魏春景, 2016. 麻粒岩相变质作用与花岗岩成因-Ⅱ: 变质泥质岩高温-超高温变质相平衡与 S 型花岗岩成因的定量模拟. 岩石学报 32, 1625-1643.
魏春景, 朱文萍, 2016. 麻粒岩相变质作用与花岗岩成因-I: 变质泥质岩/杂砂岩高温-超高温变质相平衡. 岩石学报 32, 1611-1624.